Microbiological parameters
Legionella pneumophila
Pseudomonas aeruginosa
Escherichia coli
Coliforme Bakterien
Clostridium perfingens
Giardia
Giardia is a genus of anaerobic flagellated protozoan parasites. Their life cycle alternates between a swimming trophozoite and an infective, resistant cyst. The symptoms of Giardia, which may begin to appear 2 days after infection, include violent diarrhoea, excess gas, stomach or abdominal cramps, upset stomach, and nausea. Resulting dehydration and nutritional loss may need immediate treatment. A typical infection can be slight, resolve without treatment, and last between 2–6 weeks, although it can sometimes last longer and/or be more severe.
Person-to-person transmission accounts for the majority of Giardia infections and is usually associated with poor hygiene and sanitation. Giardia is found on the surface of the ground, in the soil, in undercooked foods, and water along with improper cleaning of fecal material from the hands after handling infected feces. Water-borne transmission is associated with the ingestion of contaminated water. In the U.S., outbreaks typically occur in small water systems using inadequately treated surface water. Venereal transmission happens through fecal-oral contamination. Additionally, diaper changing and inadequate hand washing are risk factors for transmission from infected children. Lastly, food-borne epidemics of Giardia have developed through the contamination of food by infected food-handlers.
The Centers for Disease Control and Prevention (CDC) recommends hand-washing and avoiding potentially contaminated food and untreated water. Boiling suspect water for one minute is the surest method to make water safe to drink and kill disease-causing microorganisms such as Giardia lamblia if in doubt about whether water is infected. Chemical disinfectants or filters may be used. According to a review of the literature from 2000, there is little evidence linking the drinking of water in the N. American wilderness and Giardia. The researcher notes that treatment of drinking water for Giardia may not be as important as recommended hand-washing in wilderness regions in North America. CDC surveillance data (for 2005 and 2006) reports one outbreak (6 cases) of waterborne giardiasis contracted from drinking wilderness river water in Colorado. However, less than 1% of reported giardiasis cases are associated with outbreaks.
Cryptosporidium
Cryptosporidium is a genus of apicomplexan parasitic alveolates that can cause a respiratory and gastrointestinal illness (cryptosporidiosis) that primarily involves watery diarrhea (intestinal cryptosporidiosis) with or without a persistent cough (respiratory cryptosporidiosis) in both immunocompetent and immunodeficient humans. The Cryptosporidium spore phase (oocyst) can survive for lengthy periods outside a host. It can also resist many common disinfectants, notably chlorine-based disinfectants.
Many treatment plants that take raw water from rivers, lakes, and reservoirs for public drinking water production use conventional filtration technologies. Direct filtration, which is typically used to treat water with low particulate levels, includes coagulation and filtration but not sedimentation. Other common filtration processes including slow sand filters, diatomaceous earth filters, and membranes will remove 99% of Cryptosporidium. Membranes and bag- and cartridge-filter products remove Cryptosporidium specifically.
Cryptosporidium is highly resistant to chlorine disinfection, but with high enough concentrations and contact time, Cryptosporidium inactivation will occur with chlorine dioxide and ozone treatment. In general, the required levels of chlorine preclude the use of chlorine disinfection as a reliable method to control Cryptosporidium in drinking water. Ultraviolet light treatment at relatively low doses will inactivate Cryptosporidium. Water Research Foundation-funded research originally discovered UV's efficacy in inactivating Cryptosporidium.
One of the largest challenges in identifying outbreaks is the ability to verify the results in a laboratory. The oocytes may be seen by microscopic examination of a stool sample, but they may be confused with other objects or artifacts similar in appearance. Most cryptosporidia are 3–6 μm in size, although some reports have described larger cells.
For the end consumer of drinking water believed to be contaminated by Cryptosporidium, the safest option is to boil all water used for drinking.
Cases of cryptosporidiosis can occur in a city with clean water; cases of cryptosporidiosis can have different origins. Like many fecal-oral pathogens, it can also be transmitted by contaminated food or poor hygiene. Testing of water, as well as epidemiological study, are necessary to determine the sources of specific infections. Cryptosporidium typically does not cause serious illness in healthy people. It may chronically sicken some children, as well as adults exposed and immunocompromised.